

Soil frost from microwave data

Kimmo Rautiainen, Jouni Pulliainen, Juha Lemmetyinen, Jaakko Ikonen, Mika Aurela

Why landscape freeze/thaw?

Latitudinal variation in mean correlations (r) between annual nonfrozen season variations and summer (JJA) NDVI growth anomalies defined over a 9-year record (2000-2008) (after Kim et al. 2012, Fig 5b).

- Ecosystem function and geochemical cycling
- Hydrological processes/flood forecasting
- Soil state inputs to radiometer and radar algorithms for other land surface variables (i.e. for terrestrial snow)
- Land surface initialization (data assimilation and numerical weather prediction)

Slide courtesy of Youngwook Kim, John Kimball (Montana State University)

Motivation: CO2 emissions are growing

Additionally, natural (ecosystem) sinks and sources are changing due to climate change

Top four emitters in 2011 covered 62% of global emissions China (28%), United States (16%), EU27 (11%), India (7%)

Integrated view on the land cryosphere: snow and soil processes

 Soil and vegetation processes in addition to snow cover

•Full seasonal view on phenomena relevant to carbon exchange and annual balance at the high latitudes

FMI Sodankylä satellite CAL-VAL program:

Among key topics: Development of satellite data retrieval algorithms to map *snow* and *soil state characteristics*, and their relation to *carbon cycle (CO2 and CH4 fluxes)*

Sodankylä soil process CAL/VAL program: L-band reference radiometer for SMOS and SMAP

ELBARA-II reference radiometer for SMOS

- L-band (1.4GHz), dual polarization
- Manufactured by Gamma RS AG (Switzerland)
- Currently on lease from ESA
- Development of satellite applications
- Detection soil freeze/thaw status for the monitoring of annual carbon cycle
- Collected time series:
 - *Mineral soil site*: 2009-2012
 - Organic soil (wetland) site: 2012 ->

ELBARA-II observations vs soil freezing

•Three-year period of forest opening observations – mineral soil with thin organic layer

09/11

10/01

Three-winter time-series: ELBARA-II and frost/snow

Winter period: saturated T_b signal (especially for *V*-pol), winter average increased from summer, decreased polarization difference

Summer period: higher variability in the signal, larger polarization difference

Summary on ELBARA-II results

- Soil freezing has following clear effects to ELBARA-II signal:
 - 1. Increased and saturated observed brightness temperature
 - 2. Decrease in polarization difference $(T_{b,Vpol} T_{b,Hpol})$
- Algorithm based on the change detection of the "Frost Factor" parameter calculated as:
 - $(T_{VPol} T_{HPol}) (T_{ref} T_{HPol})$, where $T_{ref} = 270$ K
 - Polarization difference enhanced with H-pol brightness temperature
- Rautiainen, K., Lemmetyinen, J., Schwank, M., Kontu, A., Ménard, C.B., Mätzler, C., Drusch, M., Wiesmann, A., Ikonen, J., Pulliainen, J.
 "Detection of soil freezing from L-band passive microwave observations," Remote Sensing of Environment, Vol. 147, pp. 206-218, May 2014

CO2 flux in forest and its relation to L-band brightness temperature

Three-year time series of ELBARA-II in forest opening (top) and concurrent CO2 net flux (below)

- After snow melt-off a CO2 sink due to photosynthesis
- During autumn a clear
 CO2 source before soil
 freezing (weak source during winter)

FINNISH METEOROLOGICAL INSTITUTE

Link of soil freezing with carbon exchange – wetland 100 Snow

Since 2013, ELBARA-II installed at wetland (peatbog) site

Measured snow depth and soil frost depth

ELBARA-II brightness temperature

CH4 flux

CO₂ flux

-0.05 └─ Aug

Sep

Oct

Nov

Dec

Jan

CO2 flux

Apr

Mar

Feb

Spaceborne

Prototype retrieval algorithm for space-borne L-band observations have been successfully demonstrated

Discrimination into thawed, frozen and partially frozen states

SMOS – ESA's Soil Moisture and Ocean Salinity –mission

Coverage: whole Northern Hemisphere

Methodology also applicable to NASA SMAP

Potential for assimilation with LSMs

Location of the VIC distributed model domain (0.4 degrees) in reference to SMOS pixels in EASE grid projection

Top to bottom:

- SMOS Tb and soil states estimates from SMOS data: Frozen, Freezing and Thawed
- 2. VIC soil temperatures (C)
- 3. VIC and GlobSnow SWE (mm)
- 4. VIC thawing and freezing depths.

Way forward: Combined products to monitor the seasonal cycle of carbon exchange related phenomena

- Relevant microwave and optical satellite instruments/missions
 - SSMI/I, AMSR-E (2), SMOS, Envisat ASAR, TerraSAR-X, MODIS, AATSR, MERIS, Sentinel 1, Radarsat-1/2, Chinese FY-series ...
 - Future missions: Sentinels 2 and 3, NASA SMAP
- Combination of snow, soil and vegetation products
 - Monitoring of all carbon relevant processes of the land cryosphere
- Combined use with *in situ* data and assimilation with models
 - Proxy indicators (developed with in situ data)
 - Use with LSM

Thank You for Your Attention!