Global XCO₂ anomalies: Direct space-based observations of anthropogenic CO₂ emission areas from OCO-2 and comparison with inventory-based estimates

Janne Hakkarainen, Iolanda Ialongo, and Shamil Maksyutov

Finnish Meteorological Institute, Earth Observation Research, Erik Palménin aukio 1, 00560 Helsinki, Finland

Anthropogenic CO_2 emissions from fossil fuel combustion have large impacts on climate. In order to monitor the increasing CO_2 concentrations in the atmosphere, accurate spaceborne observations—as available from the Orbiting Carbon Observatory-2 (OCO-2)—are needed. In our recent work [*Hakkarainen et al.*, 2016] we provided a new approach to study anthropogenic CO_2 emission areas by deseasonalizing and detrending OCO-2 XCO₂ observations for deriving XCO₂ anomalies. The spatial distribution of the XCO₂ anomaly matches the features observed in the maps of the Ozone Monitoring Instrument NO₂ tropospheric columns, used as an indicator of atmospheric pollution, as well as the features observed in the ODIAC emission dataset. In addition, the results of a cluster analysis confirmed the correlation between CO₂ and NO₂ spatial patterns.

In this work, we study this idea further and provide the global XCO₂ anomaly maps for three full years 2015, 2016 and 2017. The patterns observed in these maps are compared with inventory-based estimates given by the Lagrangian particle dispersion model FLEXPART driven by the high-resolution ODIAC emission dataset. We also analyze the changes observed in XCO₂ anomaly maps and compare these changes to the inventory-based estimates, as well as to the changes observed in other trace gases (NO₂ and SO₂).

References

Hakkarainen, J., I. Ialongo, and J. Tamminen (2016), Direct space-based observations of anthropogenic CO₂ emission areas from OCO-2, Geophys. Res. Lett., 43, 11,400–11,406, doi:10.1002/2016GL070885.